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ABSTRACT

Despite decades of research on the role of moist convective processes in large-scale tropical dynamics,

tropical forecast skill in operational models is still deficient when compared to the extratropics, even at short

lead times. Here we compare tropical and Northern Hemisphere (NH) forecast skill for quantitative pre-

cipitation forecasts (QPFs) in the NCEP Global Forecast System (GFS) and ECMWF Integrated Forecast

System (IFS) during January 2015–March 2016. Results reveal that, in general, initial conditions are rea-

sonably well estimated in both forecast systems, as indicated by relatively good skill scores for the 6–24-h

forecasts. However, overall, tropical QPF forecasts in both systems are not considered useful by typical

metrics much beyond 4 days. To quantify the relationship between QPF and dynamical skill, space–time

spectra and coherence of rainfall and divergence fields are calculated. It is shown that while tropical variability

is too weak in both models, the IFS is more skillful in propagating tropical waves for longer lead times. In

agreement with past studies demonstrating that extratropical skill is partially drawn from the tropics, a

comparison of daily skill in the tropics versus NH suggests that in both models NH forecast skill at lead times

beyond day 3 is enhanced by tropical skill in the first couple of days. As shown in previous work, this study

indicates that the differences in physics used in each system, in particular, howmoist convective processes are

coupled to the large-scale flow through these parameterizations, appear as a major source of tropical

forecast errors.

1. Introduction

Deterministic short- and medium-range weather

forecasts have steadily become more skillful over the

past five decades, owing to a combination of improve-

ments in observation systems, data assimilation, and

model development, as well as computing advances

(Bauer et al. 2015). Despite this progress, low-latitude

forecasts remain less skillful than those at higher lati-

tudes, and this is likely related to differences in their

limits of deterministic predictability (Shukla 1989;

Reynolds et al. 1994; Boer 1995; Straus and Paolino

2008). One main difference between tropical versus

extratropical predictability results from the ‘‘memory’’

carried by propagating disturbances, the properties of

which depend on the balance of restoring forces due to

gravity and Earth’s rotation. In the tropics, wave dy-

namics rely more strongly on cloud–radiation and latent
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heating feedbacks than in the extratropics where moist

convection is to a greater extent tied to the large-scale

stronger rotational flow (Mapes et al. 2008; Zhu et al.

2014; Wheeler et al. 2017). This means that predictions

of tropical variability are more dependent on model

physics related to convection and cloud–radiation

feedbacks, which is one of the major sources of un-

certainty in current predictions of both weather and

climate (Flato 2013; Webb et al. 2015).

One potential source of tropical skill from short to

extended ranges derives from tropical disturbances such

as the Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1994; Zhang 2005) and convectively cou-

pled equatorial waves (CCEWs; Takayabu 1994;

Wheeler and Kiladis 1999; Wheeler et al. 2000), which

are also well known to impact weather well beyond the

tropics (Kiladis et al. 2009; Zhang 2013). Since opera-

tional numerical weather prediction (NWP) models

often struggle to initiate and correctly propagate equa-

torial waves, it is thought that there is room for reduc-

ing the differences between deterministic short- and

medium-range weather forecasts at low versus high

latitudes by improving the representation of these

wavelike disturbances in NWP models (Matsueda and

Endo 2011; Ying and Zhang 2017, 2018). To further un-

derstand the relationship between the ability ofmodels to

simulate equatorial waves and forecast skill, this paper

analyzes two global NWP systems: the National Cen-

ters for Environmental Prediction Global Forecast

System (NCEP GFS) and the European Centre for

Medium-Range Weather Forecasts Integrated Fore-

cast System (ECMWF IFS) during January 2015–March

2016. The two models are chosen to contrast the link

between equatorial waves and forecast skill in a model

that is known to perform relatively well in the tropics

(IFS; Kerns and Chen 2014; Li and Robertson 2015;

Taraphdar et al. 2016) to a model with lower tropical

skill (GFS).

This study was initially motivated by the El Niño
Rapid Response field campaign (ENRR; Dole et al.

2018), during which some of the authors participated in

the planning of flight paths aimed at encircling deep

tropical convection in the eastern Pacific. Perhaps not

surprisingly, this turned out to be a rather difficult task

given that flight plans had to be submitted 48h in ad-

vance and that the spread in tropical forecasts across

various NWPs is large, even at the short range. Common

issues with tropical rainfall forecasts can be easily seen

in Fig. 1, which shows precipitation between 58S and 58N
during ENRR from two satellite estimates (Figs. 1a,d)

and for the GFS and IFS 12- (Figs. 1b,c) and 120-h

(Figs. 1e,f) forecasts, valid at the same time as the ob-

servations (a description of these datasets is in the next

section). The period featured several coherent eastward-

and westward-propagating precipitation envelopes. The

eastward-moving envelopes are predominately Kelvin

waves, which are much more common in boreal winter

over the equatorial Pacific during El Niño, and propagate

at around 15ms21 while stronglymodulating precipitation

in their path (Straub and Kiladis 2002; Kiladis et al. 2009).

Despite the fact that satellite precipitation estimates are

not directly assimilated into eithermodel, theGFS and IFS

performance at a 12-h lead time is remarkably good in

terms of representation of zonally propagating and

even some of the mesoscale features. This demon-

strates that both models are able to produce realistic

large-scale precipitation features from their initialized

wind and thermodynamic fields. This very short-range

forecast differs strikingly from the 5-day forecasts

(Figs. 1e,f) where precipitation appears to be much less

organized, indicating that the models have difficulty in

maintaining the zonal propagation of the eastward

Kelvin waves in particular.

This situation for equatorial forecasts is in sharp

contrast to that in midlatitudes as shown in Fig. 2,

which is similar to Fig. 1 except for the 358S–508N
latitude band. Figure 2 shows that disturbances in the

North Pacific and Atlantic storm track are not only

well represented in both models in comparison to

satellite estimates, but their timing, location, and in-

tensity are still quite well predicted with 5-day lead

time. Figures 1 and 2 also illustrate the well-known

model tendency to overestimate light rain rates (Dai

2006; Stephens et al. 2010), although we note that

while the two satellite estimates are in very good

agreement, they also likely underestimate light pre-

cipitation to some extent (Huffman et al. 2007; Ellis

et al. 2009; Behrangi et al. 2012). It turns out that this

misrepresentation of tropical precipitation during

ENRR is not uncommon, as the present study dem-

onstrates in detail.

While the basic dynamical mechanisms for the exis-

tence of CCEWs is well understood (Matsuno 1966),

the manner in which they couple with moisture is much

less settled (Raymond and Fuchs 2007; Kiladis et al.

2009). This is particularly true for the MJO, which is

not a solution toMatsuno’s shallow-water system on an

equatorial beta plane, and whose very existence likely

depends on feedback between moisture and circulation

(Raymond and Fuchs 2007; Majda and Stechmann

2009). A number of modeling studies (Lin et al. 2008;

Frierson et al. 2011; Khouider et al. 2011; Hirons et al.

2013a, b; Hirota et al. 2014) have indicated that con-

vective parameterization is crucial to a model’s ability

to represent organized tropical disturbances, which

is indicative of the fundamental role of convective
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coupling to the maintenance of the disturbances. Be-

cause of the potential societal impacts of better pre-

dicting the tropical atmosphere from weather to

climate scales, improving tropical variability has been a

main focus of model development at the ECMWF,

which has resulted in significant advances in tropical

forecast skill over the last decade (Bechtold et al. 2008;

Vitart 2014). For example, improvement in the IFS

simulation of the MJO has been explicitly associated

with changes in their convective parameterization

(Hirons et al. 2013b; Hirota et al. 2014). That the IFS

overall outperforms other operational models in-

cluding the GFS is generally well established (Kerns

and Chen 2014; Li and Robertson 2015; Taraphdar

et al. 2016); however, most recent studies regarding the

tropics have been focused on the MJO and medium- to

extended-range forecast skill (Matsueda and Endo

2011; Kerns and Chen 2014). Here we concentrate on a

detailed characterization of 1–10-day global forecast

skill in the GFS and IFS, as well as on the contrasts

and linkages between tropical and extratropical skill

and the relationship between equatorial waves and

tropical skill.

We emphasize rainfall because of its inherent impact,

but also to facilitate the comparison between lower- and

higher-latitude skill since, for example, temperature and

FIG. 1. Time–longitude section of 12-h average rain rates from 15 Jan to 25 Mar 2016 averaged from 58S to 58N. Satellite estimates are

shown for (a) GPM and (d) CMORPH, and 12-h forecasts are shown for (b) the NCEPGFS and (c) the ECMWF IFS, and 120-h forecasts

are shown for (e) the NCEP GFS and (f) the ECMWF IFS.
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pressure vary much less in the tropics than in the

extratropics. Because most of the tropics is covered by

oceans where rain gauge measurements are sparse in

time and space, global quantitative precipitation fore-

casts (QPFs) are obtained by verifying modeled pre-

cipitation over land and ocean against satellite

estimates of precipitation. We refer to the study by

Haiden et al. (2012) for a global land QPF skill anal-

ysis in NWP systems that utilizes rain gauge data. We

choose two sets of observations because of the large

uncertainties involved in estimates of precipitation

because of its highly variable nature, where the main

sources of errors derive from relatively sparse satellite

observations as well as biases in retrieval algorithms

(Ebert et al. 2007; Lu et al. 2010). For instance, be-

cause satellite estimates of precipitation rely on in-

frared imagery, errors in location and amounts of

precipitation are more likely in highly sheared envi-

ronments where cirrus clouds might be advected in a

different direction from the convective cores below

them. To test how precipitation is related to the large-

scale flow, dynamical fields are also analyzed and

verified against each model’s own analysis system.

The data used in this manuscript are reviewed in

section 2, which also provides a description of the

methodology used. Results are presented in section 3

and the summary and conclusions are presented in

section 4.

FIG. 2. As in Fig. 1, but for rain rates averaged from 358 to 508N.
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2. Data and methodology

a. Deterministic forecast data

1) NCEP GFS

GFS data are from NCEP operational model version

GSM v12.0.0, which was operational from 15 January

2015 to 11 May 2016. (Details on the GFS imple-

mentation can be found online at http://www.emc.ncep.

noaa.gov/GFS/doc.php.) The native horizontal resolu-

tion is T1534 (;13km) out to 10-day lead time. Model

data are available from the Research Data Archive

(RDA) at the National Center for Atmospheric Re-

search (NCAR). GFS output is provided at 3-hourly

intervals, with initial times at 0000, 0600, 1200, and

1800 UTC.

2) ECMWF IFS

Integrated Forecast System (IFS) data are mainly

from ECMWF operational model version CY41R1,

which was operational from 12 May 2015 to 8 March

2016. From January 2015 to 11 May 2015, model version

CY40R1 is used. (Details on the IFS model imple-

mentation can be found online at https://www.ecmwf.int/

en/forecasts/documentation-and-support/changes-ecmwf-

model/ifs-documentation.) The native resolution for the

IFS is a reduced Gaussian grid at T1279 (;15km; www.

ecmwf.int/en/what-horizontal-resolution-data). Model

data were obtained at 6-hourly intervals, with initial

times at 0000 and 1200 UTC.

b. Observations

1) GPM

The Global Precipitation Measurement (GPM) Core

Observatory satellite 3B42 product (Huffman et al.

2007) is available at 3-hourly resolution as area averages

of precipitation rate on a 0.258 grid between 508S and

508N. While they are meant to be interpreted as in-

stantaneous measurements valid at each time stamp, pas-

sivemicrowave data during the 90min before and after the

observation time can be included (Huffman et al. 2007).

Each 3-hourly field is bias corrected using a monthly

satellite-gauge analysis. (GPM data are available for

download at https://mirador.gsfc.nasa.gov/cgi-bin/mirador/

presentNavigation.pl?tree5project&project5TRMM.)

Throughout the manuscript we refer to the 3B42 rainfall

product as GPM.

2) CMORPH

The Climate Prediction Center morphing technique

(CMORPH; Joyce et al. 2004) precipitation estimates

are available on the same 0.258 grid as GPM between

608S and 608N. The native resolution for CMORPH is

8 km, 30min, and the 0.258 estimates are box averages of

the native resolution estimates. The instantaneous half-

hourly values are averaged to generate the 3-hourly

estimates valid for the 3-h interval after the observation

time. CMORPH is bias corrected over land using a rain

gauge analysis and over the ocean using Global Precipi-

tation Climatology Project pentad data. (CMORPH data

are available for download at http://ftp.cpc.ncep.noaa.gov/

precip/CMORPH_V1.0/CRT/0.25deg-3HLY/.)

c. Data postprocessing

All datasets are first mapped to a common 0.258 hor-
izontal grid. This is done using bilinear interpolation

from the GFS and IFS model output, which means that

the data are subsampled and the interpolation is not

conservative. Thus, the interpolated values on the 0.258
grid represent a mix of points and area-average data,

representing a smaller area than the 0.258 grid box for

which it is valid. Because CMORPH and GPM grids are

offset by 0.1258 from the GFS grid, both datasets are

linearly interpolated to the GFS grid. To test for the

impact of horizontal resolution on skill, coarse gridded

data at 18 3 18 and 2.58 3 2.58 are obtained by the NCL

area conserving algorithm using the 0.258 3 0.258 data.
Forecasts of precipitation are provided as a rain-rate

average between forecast times, whereas both GPM and

CMORPH represent instantaneous rain rates at 3- and

0.5-hourly increments, respectively. To partially com-

pensate for this difference, we test skill using twice-daily

and/or daily averages. For the twice-daily GFS and IFS

rain rates, both initializations from 0000 and 1200

UTC are used with an averaging window of 12h. We

adopt the terminology fromZhu et al. (2014) and others:

0.5d0.5d stands for the 12-h forecast time of the sub-

sequent 12-h average rain rate, 1d0.5d stands for the

24-h forecast time of the subsequent 12-h rain rate av-

erage, and so on. The time series of rain rates at their

time of validation is referred to as the forecast time se-

ries. For example, forecast time series illustrated in

Figs. 1 and 2 are for 0.5d0.5d and 5d0.5d. The GPM and

CMORPH twice-daily time series are calculated by av-

eraging rain rates from each day from 0300 to 1200

UTC and then from 1500 to 0000 UTC. We have also

tested using half weights at the endpoints (0000 and 1200

UTC) and then averaging, and the results are very

similar. Daily forecast time series are analogous where

the terminology in this case is 1d1d for the 1-day forecast

of the subsequent 1-day rain-rate average. Results

shown here use the 0000 UTC initializations for daily

estimates, with the results using 1200 UTC nearly

identical. To evaluate the shortest available forecasts,

we also use the 6-h GFS and IFS forecasts initialized at
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either 0000 or 1200 UTC, which are compared to

6-hourly estimates of GPM and CMORPH calculated

using half-weights at the endpoints. Forecasts of dy-

namical variables are instantaneous and are verified

against each respective model’s analysis at the same

valid time.

d. Verification methods

Forecast verification is done for the period of January

2015–March 2016 since this is the longest recent period

where only minor updates were made to each opera-

tional system described above. We have computed a

wide number of different verification measures in-

cluding spatial pattern correlations, gridpoint correla-

tions, root-mean-square error, bias, equitable threat

score, and fractions skill score (FSS) and found that our

conclusions in terms of relative skill are not overly

sensitive to the metric used. Because our interest is

mostly on the relative skill between the two models and

between tropical and extratropical regions, we report

our results using either gridpoint or spatial pattern cor-

relations of total rain rates. To test the impact of hori-

zontal resolution, we report some results using the FSS

in appendix A and to analyze the diurnal variability in

the two models, a comparison of their rainfall diurnal

cycles is presented in appendix B. To test sensitivity

within the 15-month period shown here, skill is also as-

sessed for independent 3-month-long subperiods (not

shown), where we find that our main conclusions re-

garding relative skill are robust. We also note that while

the IFSmodel version changed between January–March

2015 and 2016, we do not find significant differences in

relative skill (not shown).

For a given lead time, the gridpoint correlation is the

temporal correlation between the forecast time series

(IFS or GFS) and the corresponding observed time se-

ries (GPM or CMORPH) valid at the same time, using

the entire 15-month sample. These gridpoint correla-

tions are given as area-weighted averages over the four

regions defined in Table 1, where the ocean versus land

partition is based on the GFS land mask. Pattern cor-

relations are calculated using all grid points within the

equatorial band from 108S to 108N and separately for an

extratropical band from 358 to 508N. The statistical sig-

nificance of the differences between GFS and IFS cor-

relations is assessed by bootstrapping the total number

of forecasts, where at each grid point, we use 1000

random subsamples with replacement and the confi-

dence interval is defined by the lower and upper fifth

percentile of the correlation distribution. Over the re-

gions shown in Table 1, differences in correlations are

significant when the mean confidence intervals do not

overlap.

Rain-rate space–time power spectra calculations us-

ing the forecast time series are compared to satellite

estimates following the methodology of Wheeler and

Kiladis (1999), except that we use 64-day segments

overlapping by 15 days to increase our sample size since

only a 15-month period is analyzed. This calculation

involves first detrending and tapering to zero all grid-

point time series within each 64-day segment. Then, for

each time segment and latitude from 508S to 508N,

spectral coefficients in time and longitude are obtained

by calculating a two-dimensional Fourier transform.

The mean spectral coefficients over all time segments

are denoted akv, where k is the planetary wavenumber

and v is the frequency in cycles per day (cpd). The mean

raw power spectrum is the average of jakvj2 between

158S and 158N for the tropics, where the symmetric and

antisymmetric components with respect to the equator

are calculated separately. For the extratropics, we dis-

play the mean jakvj2 between 308 and 508N. The squared

coherence between rain rate and divergence are simi-

larly calculated where first the divergence spectral co-

efficients bkv are calculated in an analogous way as akv.

Squared coherence spectra and the corresponding

significance levels are computed using the NCL func-

tion mjo_cross.ncl where the 95% confidence level is

0.18 for a window length of 64 days and 1.25 years

of data. In all space–time power and coherence

plots, Matsuno’s equatorial wave dispersion curves

(Matsuno 1966) are displayed following the notation

from Kiladis et al. (2009) where n5 1 ER stands for

equatorial Rossby waves, and n5 1 IG stands for in-

ertio-gravity waves.

3. Results

a. Mean rainfall patterns

The top panels in Fig. 3 show theGPMandCMORPH

mean daily rain rates during the analyzed period. These

two plots highlight the inherent uncertainty in pre-

cipitation datasets in general (e.g., Gehne et al. 2016).

As shown further below, while there are some obvious

differences, the satellite estimates agree better with each

other than with the individual models’ precipitation

rates. The middle panels show that the mean patterns

TABLE 1. Average regions used in Figs. 5, 7, and 8.

Region Latitude band Ocean Land

TR-O 108S–108N 3
NH-O 358–508N 3
TR-L 108S–108N 3
NH-L 358–508N 3
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and intensity of rainfall from 1d1d forecasts are in rea-

sonable agreement with observations, as well as with

one another, although some biases are clearly evident.

In contrast, the bottom panels indicate a clear dry bias

along the equator for the GFS at a 5-day lead time and,

although this bias in the IFS is much weaker, the equa-

torial zone is still too dry over the Indian, Pacific, and

Atlantic Oceans. Contrasts in mean rain rates are more

clear by looking at the relative differences shown in

Fig. 4, defined as

r(lat, lon)LTDiDj
5

RR
Di
2RR

Dj

0:5 RR
Di
1RR

Dj

� �, (1)

where Di and Dj stand for datasets GPM, CMORPH,

GFS, or IFS; RR is the rain rate at each grid point; and

FIG. 3. Mean daily precipitation rate for the period January 2015–March 2016 from the (a) GPM, (b) CMORPH,

(c) NCEPGFS day-1 forecast (1d1d), (d) ECMWFIFS day-1 forecast (1d1d), (e) NCEPGFS day-5 forecast (5d1d),

and (f) IFS day-5 forecast (5d1d).

FIG. 4. Normalized differences in precipitation for the period January 2015–March 2016 [using Eq. (1)] for

(a) GPM and CMORPH, (b) day-1 NCEP GFS and ECMWF IFS (1d1d), (c) day-1 NCEP GFS (1d1d) and

CMORPH, and (d) day-1 ECMWF IFS (1d1d) and CMORPH. (e),(f) as in (c),(d), but for day 5 (5d1d). Gray

shading corresponds to regions where the amplitude of the normalized difference is larger than 1.
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the overbar denotes an average over all forecasts for a fixed

forecast lead time (LT).Differences that are larger than the

mean are shaded in gray. Figure 4 reveals many interesting

features concerning biases, such as the following:

d The largest differences between the satellite estimates

occur over Asian and African land regions, and at

higher oceanic latitudes (Fig. 4a). Over the oceans,

GPMmean rain rates are weaker at high latitudes and

in the dry subtropical regions of the eastern Pacific and

Atlantic. The relatively good agreement over most of

the tropics is notable.
d The amplitude of the differences between 1d1d IFS

and GFS forecasts are comparable to the differences

between CMORPH and GPM, with the GFS tending

to be wetter over the tropical and subtropical oceans

and drier over the continents than the IFS (Figs. 4a,b).
d Forecasts by both the GFS and IFS exhibit generally

wet biases compared to CMORPH (Figs. 4c,d) and

GPM (not shown) with overall larger amplitude in the

GFS, particularly over the tropical oceans. These

biases grow larger with time (Figs. 4e,f).
d By 5-day lead times, both the GFS and IFS have

developed dry biases along the equator (Figs. 4e,f),

with this bias larger in the GFS.
d Over land there is more geographic variability in

biases. For instance, GFS rains less over most of Asia,

but it rains more over North America, and the IFS

has a larger dry bias over Australia.

b. Rainfall histograms

While mean rain-rate patterns, particularly at short

forecast lead times, are in reasonable agreement with

observations, probability density distributions (pdfs) of

rain rate shown in Fig. 5 reveal more substantial dis-

crepancies between modeled and observed rainfall.

These pdfs are estimated based on gridpoint histograms

of forecasts summed and area weighted over two lati-

tude bands: 108S–108N (Figs. 5a,c) and 358S–508N
(Figs. 5b,d) as defined in Table 1. The plots are nor-

malized such that the binned rain rates add up to 100%.

We excluded no rain occurrences from the pdfs but show

their percentage contributions as circles on the left or-

dinate. We also use logarithmic bin widths to mitigate

the dry side skewness of rain-rate histograms, making it

easier to see differences between the pdfs at higher rain

rates. Focusing on the top row, all of the panels display

the tendency for GPM and CMORPH to report zero

rain rates much more frequently than in the models, as

shown by the filled circles along the left ordinate. This is

certainly in part because they report instantaneous

measurements as opposed to accumulated totals from

the models. These panels also show that even the ob-

served distributions differ substantially from each other,

with CMORPH displaying a heavier tail at the lowest

rain rates (,0.01mmh21). In addition, weak rain rates

(0.01–0.1mmh21) aremore likely in bothmodels than in

either satellite estimate. In fact, modeled rain rates

peak within this bin (0.01–0.1mmh21) whereas the

satellite estimates peak in the 0.1–1.0mmh21 range.

Stronger rain rates (.1.0mmh21) are generally un-

derestimated by the GFS and IFS and these are more

frequent in the GPM in comparison to CMORPH. In

summary, the pdfs from 6-h forecasts of both the IFS

and GFS are narrower than the observed CMORPH

and GPM pdfs.

FIG. 5. Probability density functions (pdfs) of mean rain rates from (a)–(d) 0–6-h and (e)–(h) 0–24-h forecast periods for the GFS (blue)

and IFS (red) overlaid with the pdfs from GPM (gray) and CMORPH (black) using mean rain rates valid at the same times. (from left to

right) four different regions are shown: tropical oceans, NH oceans, tropical land, and NH land (defined as in Table 1 and in section 4c).

Filled circles on the left side of each panel display the percentage of no rain occurrences for each dataset.
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Interestingly, the disagreement among 6-h forecast

pdfs does not seem to depend on the geographic regions

displayed, that is, there are large differences among the

pdfs shown in each panel on the top row of Fig. 5. This

result is in contrast with the pdfs of daily averaged rain

rates shown on the bottom row of Fig. 5, where the NH

pdfs are much closer to one another than their tropical

counterparts. This further supports the conclusion that

at least part of the 6-hourly differences are due to

comparing instantaneous to average rain rates. Another

striking difference between modeled and observed pdfs

mentioned above regards the much lower frequency of

no rain occurrences in models compared to observa-

tions, particularly over the tropical ocean. These dif-

ferences are even larger when using daily averages, thus

cannot be entirely because satellite observations are

instantaneous. Spatial averaging tends to reduce the

differences in no rain occurrences, but then larger

differences between observed and modeled pdfs are

seen at low rain rates (not shown). While excessive

drizzle in models is a common problem (Sun et al.

2006; Stephens et al. 2010; Ahlgrimm and Forbes

2014), contrasting CMORPH and GPM it is clear that

there are also large uncertainties in the observations

regarding fractions of no to low rain rates. In partic-

ular, there is ample evidence that the algorithm used

in the GPM estimates tends to underrepresent low

precipitation amounts and occurrence while over-

representing no rain occurrences (Ellis et al. 2009;

Behrangi et al. 2012). The better agreement of daily

pdfs in the NH than in the tropics is consistent with the

generally better NH QPF skill than the tropical QPF

skill that is discussed next.

c. Forecast skill

Figure 6 displays QPF skill based on gridpoint tem-

poral correlations between GPM, CMORPH, and the

1d1d and 5d1d forecasts, providing a broad view of er-

rors in rainfall forecasts. Consistent with their small

normalized differences (Fig. 4a), temporal variability

between CMORPH and GPM is quite highly correlated

(Fig. 6a), with the exception of high topographic or very

dry regions. In contrast to the observations, there is a

strong meridional gradient in correlations when com-

paring the 1d1d precipitation forecasts from the two

models, with correlations generally increasing with dis-

tance from the equator, especially over the ocean

(Fig. 5b). This meridional gradient is also clear between

GFS1d1d and CMORPH (Fig. 6c) and IFS1d1d and

CMORPH (Fig. 6d), as well as when models are com-

pared to GPM (not shown). Thus, the skill in both sys-

tems is much higher, and their forecasts agree with each

other much more, over the extratropics than at low lat-

itudes. Interestingly, while IFS skill is higher than the

GFS over most regions of the globe, their correlation

patterns are similar, even down to detailed features,

when comparing the two models. The cause of these

mutual signals is not clear, but could be related to spe-

cific events in the relatively short record that both sys-

tems were more (or less) skillful in forecasting. As

expected, global skill drops everywhere at the 5-day lead

time (Figs. 6e,f), but tropical skill in the IFS remains

higher than in the GFS.

To further investigate the regional differences in QPF

skill between the models, Fig. 7 shows the gridpoint

temporal correlations averaged over the regions defined

FIG. 6. As in Fig. 3, but for gridpoint temporal correlations.
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in Table 1 as a function of forecast lead time, with

symbols displayed where differences between models

are significant. The upper thin gray curves show the

temporal correlations between GPM and CMORPH,

which are in much closer agreement with each other

than each model is with observations. The black lines

show the correlations between the models, which in

general is higher than each model is with CMORPH (as

well as GPM, not shown). Overall, the IFS has higher

skill than the GFS, and while the skill scores shown here

are calculated using 2.58 3 2.58 averages, this relative

relationship is not sensitive to the various metrics or

resolutions we have extensively tested, such as the FSS

results shown in appendix A. It is clear from Fig. 7 that

QPF in the IFS outperforms the GFS from day 1, par-

ticularly in the tropics, which suggest that the IFS ini-

tialization is better than theGFS, possibly because of the

IFS advanced four-dimensional variational data assim-

ilation approach. The GFS QPF skill also tends to decay

more rapidly than the IFS, once again, particularly over

the tropics. As shown by many others (Haiden et al.

2012; Zhu et al. 2014; Wheeler et al. 2017), QPF skill

decays more rapidly in the tropics than in the extra-

tropics, but beyond week 1, forecast skill scores in the

tropics are higher than in the extratropics. We note

that a very similar qualitative relationship between QPF

skill between models and regions is found when fore-

casts are verified against each model’s respective 1d1d

forecast (not shown), as opposed to satellite estimates.

Last, verification against GPM also reveals a very simi-

lar picture, except that skill is overall slightly lower,

possibly because of the lower frequency of light rain

rates in comparison to CMORPH mentioned in the

previous section (Fig. 3).

Figure 8 depicts 850-hPa divergence (D850) and

500-hPa geopotential (Z500) forecast skill, where each

model is verified against its own analysis. Over the

tropical oceans, low-level divergence skill is very similar

for the two models, but in all other regions the IFS again

shows higher skill. While in the extratropics differences

in the IFS versus GFS D850 skill are smaller than with

QPF, the differences in D850 skill over tropical land are

more comparable to those differences for QPF. Z500

skill is a common metric for model performance in the

extratropics and it also indicates higher skill for the IFS

at most lead times. The D200 skill is similar to D850,

except that skill is even more similar for the two

models, including land points (not shown). Since the

forecast skill in tropical divergence is more comparable

between the GFS and IFS than for QPF, this suggests

that model physics rather than model dynamics plays a

larger role in the QPF performance differences be-

tween the two systems. We further discuss this issue in

the next section.

d. Space–time spectral analysis

Space–time spectral analysis has become a standard

approach to quantify properties of equatorial waves in

observations (Hayashi 1982; Takayabu 1994; Wheeler

and Kiladis 1999; Hendon and Wheeler 2008; Kiladis

et al. 2009), and models (Lin et al. 2006; Straub et al.

2010; Guo et al. 2015). We apply the technique here to

forecast time series detailed in section 2d. For con-

ciseness, results are shown only for the equatorial sym-

metric component since conclusions are qualitatively

similar for the antisymmetric signals. Figures 9a and 9d

show that the main features of the climatological equa-

torial rainfall space–time spectra are well represented

even when using only a 15-month period of satellite

rainfall estimates. These observed space–time spectra are

red in both wavenumber and frequency, with clear MJO

peaks between 30 and 60 days and eastward wave-

numbers 1–3. Enhanced power also follows CCEW dis-

persion curves such as Kelvin and ER (Matsuno 1966)

and at higher frequencies (.0.3 cpd) there is a clear

westward bias where enhanced power is associated with

FIG. 7. Gridpoint temporal correlations averaged over the same four regions shown in Fig. 5 and defined in Table 1. Filled circles

correspond to forecast lead times where differences betweenNCEPGFS and ECMWF IFS skill are significant (see section 4c for details).

The mean gridpoint temporal correlation is shown for the GFS (blue) and IFS (red) against CMORPH, as well as between the GFS and

IFS (black) and CMORPH andGPM (light gray). For better comparison between tropics and NH, the tropical IFS and GFS skill curve is

shown again in lighter colors in the NH panels.
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westward-propagating IGs (WIGs; see Kiladis et al. 2009;

Tulich and Kiladis 2012). It is clear that GPM and

CMORPH (Figs. 9a,d) are in very close agreement and

that the power spectra from both model forecast time

series (shown on panels to the right) are too red, with too

little power at higher frequencies in comparison to ob-

servations. The IFS (Figs. 9e,f) appears to have less

spectral power than the GFS (Figs. 9b,c), but the

FIG. 8. As in Fig. 7, but for 850-hPa divergence (D850) and 500-hPa geopotential (Z500).

FIG. 9. Zonal wavenumber and frequency power spectra of symmetric rain rates about the equator averaged from 158S to 158N for the

period January 2015–March 2016 of (a) GPM, (b) GFS 1d0.5d, (c) GFS 5d0.5d, (d) CMORPH, (e) IFS 1d0.5d, and (f) IFS 5d0.5d.

Dispersion curves shown are for equatorial waves as in Wheeler and Kiladis (1999), for equivalent depths of 12, 25, and 50m.
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distribution of power is closer to observations in the IFS

than the GFS. For instance, at intraseasonal time

scales, the GFS ratio of eastward to westward power is

smaller and closer to 1 than for the IFS, where a

larger ratio indicates better MJO model performance

(Waliser 2009).

Another way to diagnose CCEWs is to calculate

space–time cross spectra between variables (Wheeler

and Kiladis 1999; Hendon and Wheeler 2008; Waliser

2009). These cross spectra can be interpreted as de-

compositions of the lag-correlation between variables

for each wavenumber and frequency, and they provide

insights on the space–time scales that make up the

overall skill. The cross-spectral approach is applied here

to investigate the scales that contribute to QPF skill and

then to assess the relationship between rain rates and

low-level divergence, which is chosen here as a proxy for

the large-scale mass circulation.

Figure 10a shows that coherence between GPM and

CMORPH is very high (. 0.9) across space–time scales,

which is not surprising given the strong gridpoint tem-

poral correlations between them (Fig. 6a). According

to our phase convention (see Table 2), GPM and

CMORPH are in phase at most scales, except that GPM

slightly lags CMORPH around the WIG spectral region

where slightly leftward-pointing arrows are seen. The

patterns of coherence and phase between GFS and IFS

in the short range (0.5d0.5d, Fig. 10d) are similar to

GPM and CMORPH in the sense that models tend to be

in phase with the highest coherence located at the lowest

frequencies and wavenumbers. Higher coherence ex-

tends to synoptic scales along the Kelvin, WIG, and ER

dispersion curves as well as to the westward spectral

region that corresponds to tropical depression (TD)

disturbances (Takayabu 1994; Dunkerton and Baldwin

1995; Wheeler and Kiladis 1999). Within the first

FIG. 10. As in Fig. 9, but for coherence squared between (a) GPM and CMORPH, (b) CMORPH and GFS 1d0.5d, (c) CMORPH and

GFS 5d0.5d, (d) IFS and GFS 0.5d0.5, (e) CMORPH and IFS 1d0.5d, and (f) CMORPH and IFS 5d0.5d. Statistically significant signals at

the 95% level are color shaded (white areas are not significant). Arrows show the phase between the two variables where upward-pointing

arrows are in phase, leftward-pointing arrows mean, for example, that at higher frequencies GPM lags CMORPH by 1/8 cycle (see phase

convention in Table 2).

TABLE 2. Display of the phase sign convention for any two

variables X and Y.

[ X in phase with Y

/ X leads Y by a 1/4 of a cycle

Y X out of phase with Y

) X lags Y by a 1/4 of a cycle
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forecast day, coherence between models and observa-

tions is already much weaker than between GPM and

CMORPH (Figs. 10b,e), but the level of coherence as-

sociated with the MJO is similar in the GFS and IFS. In

contrast to the intraseasonal signal, the IFS is more co-

herent with CMORPH and GPM (not shown) at syn-

optic scales than the GFS, particularly along Matsuno’s

dispersion curves. Rainfall from both models is in phase

with observations at most scales, except that the IFS

phasing at higher frequencies implies that IFS rainfall

tends to lead the CMORPH and GPM (not shown),

suggesting that IFS Kelvin waves and WIGs propagate

too fast. Coherence along WIGs and higher-frequency

Kelvin waves is much lower in the GFS, implying that

this model has a difficult time propagating these small-

scale waves, even when they are reasonably well

initialized. At the medium range (5d0.5d), synoptic co-

herence drops dramatically in both models, but more so

for the GFS (Figs. 10c,f). For example, while low, the

IFS still shows significant coherence extending to higher

frequencies than the GFS, with phases consistent with

those in the observations. In addition, the ER and MJO

coherence is now substantially stronger in the IFS than

in the GFS. These results are consistent with the IFS

having an overall superior tropical QPF performance,

and suggest that the IFS draws skill from its better ability

to propagate initialized equatorial waves. It is important

to note that the lack of spectral power or coherence does

not necessarily imply that the model is not able to

initiate a particular disturbance, but rather that their

triggering is not consistent when comparing forecasts

that are initialized 12h apart.

Figure 11 displays the coherence and phase between

precipitation and low-level divergence (D850) and re-

veals patterns consistent with studies such as Hendon and

Wheeler (2008) where much longer records of analyzed

and observed data are used. Figures 11a and 11d

show that, for both models, coherence between

the respective analyses of low-level divergence and

CMORPH estimates are very similar, peaking along the

MJO and Matsuno’s dispersion curves, with nearly

identical results obtained when using GPM (not shown).

The phase depends on thewave type, so for example, low-

level convergence leads precipitation by about 1/4 and 1/8

of a cycle for WIG and Kelvin waves, respectively, with a

smaller lag seen for the MJO (Figs. 11a,d). In addition,

FIG. 11. As in Fig. 10, but for coherence between precipitationP and 850-hPa divergence (D850). (a) CMORPHandGFSD850 analysis,

(b) GFS P 1d0.5d and D850 1d, (c) GFS P 5d0.5d and D850 5d, (d) CMORPH and IFS D850 analysis, (e) IFS P 1d0.5d and D850 1d, and

(f) IFS P 5d0.5d and D850 5d. Arrows pointing down and to the right mean that precipitation leads low-level divergence, or equivalently,

precipitation lags low-level convergence (see phase convention in Table 2).
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ER low-level convergence tends to bemore in phase with

precipitation than in the other equatorial disturbances.

At 1-day lead time (Figs. 11b,e), both models tend to

show low-level convergence and precipitation along

Matsuno’s dispersion curves more in phase than in the

observations (Figs. 11a,d) with this tendency stronger in

the GFS. This phasing implies that rainfall associated

with low-level convergence develops too quickly in both

models. Phase leads and coherences deteriorate further at

5-day lead time in both systems (Figs. 11c,f), although the

IFS compares notably better to observations than the

GFS. Another important point is that, while both models

have similar skill in low-level divergence (shown in

Fig. 8), the IFS is better able to simulate the relationship

between low-level divergence and precipitation than

the GFS.

Taken together, these results suggest that coupling

between thermodynamics and large-scale circulation is

stronger in the IFS than in the GFS, which likely stems

from differences in the convective parameterizations

(Hirons et al. 2013a,b). In particular, it is known that

some convective parameterizations tend to be active too

often and too early depending on the entrainment rate,

which affects CCEW propagation (Lin et al. 2008;

Frierson et al. 2011; Hirons et al. 2013b). Importantly,

the coherence analysis shown here provides a process-

based diagnostic that could be useful for model devel-

opment aimed at improving short- to medium-range

forecasts in the tropics.

The space–time coherence analysis can be applied to

the extratropics as well, which is illustrated in Fig. 12 for

coherence averaged from 358 to 508NbetweenGPMand

GFS D850. The main difference between tropics and

extratropics is that coherence and spectral power (not

shown) peak along synoptic scales associated with the

storm track, as opposed to intraseasonal scales, with a

lag of about a quarter of cycle between D850 and

rainfall. Both models are very similar in coherence and

phase (IFS not shown), and both are able to sustain

these spectral relationships for much longer lead times

than in the tropics (see day 8 in Fig. 12c). Unlike the

tropical QPF, the differences in extratropical QPF

model performance between the GFS and IFS are not

likely associated with differences in their ability to

propagate midlatitude baroclinic waves.

e. Relationship between tropical and extratropical
QPF

The atmospheric response to variations in latent

heating in the tropics is known to extendwell beyond the

tropics (Sardeshmukh and Hoskins 1988; Grimm and

Silva Dias 1995; Branstator 2014) and past studies have

shown that a reduction of tropical forecast errors leads

to improved medium to extended forecast skill over

distant regions such as North America and Europe

(Ferranti et al. 1990; Jung et al. 2010). One general

mechanism for tropical–extratropical teleconnections

is that latent heating in the tropics generates subtropi-

cal ‘‘Rossby wave sources,’’ which then give rise to

Rossby wave trains that propagate to higher latitudes

(Sardeshmukh and Hoskins 1988). The details of the

wave patterns and their paths depend on interactions

between the horizontal and vertical distribution of the

tropical heat source due to precipitation and the large-

scale basic-state flow (Sardeshmukh and Hoskins 1988;

Grimm and Silva Dias 1995; Newman and Sardeshmukh

1998). One potential way to test if these mechanisms

are present in the GFS and IFS is to verify whether

there is a relationship between tropical short-range

QPF skill and extratropical skill at later lead times,

which would then suggest that when the modeled

tropical heat source is well represented, extratropical

skill is gained because of improvements in the gener-

ated Rossby responses.

FIG. 12. As in Fig. 11 (top), but that the coherence is averaged from 358 to 508N and the analysis of (a) CMORPH andGFSD850, (b) GFS

P 1d0.5d and D850 1d, and (c) GFS P 8d0.5d and D850 8d is shown.
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To assess the relationship between tropical QPF and

extratropical forecast skill in the GFS and IFS, we first

estimate the probability density function (pdf) of all the

daily rainfall skill scores using pattern correlations (de-

fined in section 2d) over the band extending from 358 to
558N (pdfNH,QPF). These unconditional pdfs are shown

by the black curves in Fig. 13, where the pdfs become

broader and shift toward the left (lesser skill) at longer

lead times. We then condition similar pdfs on 1-day lead

time tropical QPF, where we use the 1d1d pattern corre-

lation for the region between 108S and 108N and define

good (poor) tropical forecasts as days where scores are

above (below) its upper (lower) quartile. The pdfs are

generated using a kernel estimation method (MATLAB’s

ksdensity function) and, while more noisy, results are

similar using a histogram calculation. Confidence intervals

for the pdfs are estimated using a bootstrap method with

1000 random samples, which is used to calculate the 5th

and 95th percentiles of the pdf at each bin. The conditional

pdfNH,QPF for various lead times and for each model are

superimposed on the unconditional pdfs in Fig. 13.

As mentioned above, our underlying hypothesis is

that if the model is able to represent the dynamical

response to tropical heating, then the pdfNH,QPF should

shift to higher skill when the 1-day lead tropical forecast

is good and to lower skill when the tropical QPF is poor.

This is precisely the tendency shown in Fig. 13 for the

IFS (right panels), where the good tropical forecasts are

associated with a shift to the right (green curves) when

compared to the poor tropical forecasts (purple curves)

at all leads out to 8 days. However, this is not true for the

GFS (left panels). The shift in the conditional pdfs is also

seen when using NH geopotential at 500 hPa and di-

vergence at 200-hPa skill scores as opposed to QPF, but

it is not seen in the equivalent Southern Hemisphere

(SH) latitudinal band (not shown). The lack of a signal in

the SH is interesting and could be due to differences in

wave guiding (Hoskins and Ambrizzi 1993) or their in-

teractions with the ENSO basic state, which we plan on

investigating in a future study using more extensive re-

forecast datasets. Importantly, when tropical forecast

skill is quantified in terms of the upper-level divergence

(D200), the analogous conditional pdfNH,QPFs are shifted

in a similar way as the IFS in Fig. 13, except that the shift

toward better (worse) scores when the tropical D200

skill is good (poor) is seen for both IFS andGFS (see the

FIG. 13. Pdfs of NHQPF forecast skill score (from top to bottom) for forecast day 1, 3, 5, and 8 using daily pattern

correlations for the period January 2015–March 2016. (left) NCEP GFS and (right) ECMWF IFS pdfs. The pdfs

over the entire period are shown in black and the conditional pdf on good (poor) day-1 tropicalQPF skill is shown in

green (purple). Shading represents the 90% CI of the probability in each bin and symbols highlight bins where the

CI of the conditional pdf does not overlap with the unconditional pdf.
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online supplemental material). This indicates that if the

GFS short-range forecast of tropical upper-level di-

vergence flow is good, then there is a downstream pos-

itive impact in extratropical skill. As with the coherence

analysis shown in the previous section, this result

strongly suggests that GFS forecast errors are more

likely associated with model physics rather than dy-

namics, because tropical rainfall and circulation are not

as realistically coupled as in the IFS. This view is also

consistent with the results from the previous sections

that equatorial waves are a key mechanism linking

tropical moist convective processes and large-scale

dynamics.

4. Summary and conclusions

In this study the skill of the GFS and IFS operational

forecasts out to 10-day lead time is analyzed, with a fo-

cus on the relationship between equatorial waves and

quantitative precipitation forecasts. Our underlying

hypothesis is that models that are able to initialize and

propagate disturbances that are inherently deterministic

such as Kelvin waves and theMJOwill perform better in

terms of tropical QPF, which will also lead to improve-

ments in extratropical forecasts. Forecasts from the

operational IFS and GFS forecast systems are com-

pared, using twice-daily initializations from January

2015 to March 2016. The QPF performance is evaluated

against GPM and CMORPH precipitation satellite es-

timates or the models’ respective analysis in the case of

dynamical variables.

Both systems produce good very short-range

(12 h–1 day) forecasts of rainfall with similar mean

patterns of daily precipitation rates when compared to

each other and to satellite observations. This indicates

that the initialized fields are reasonably good, especially

when considering that precipitation data are not directly

assimilated into either system. At longer lead times, the

GFS develops a much stronger dry bias at the equator

than the IFS (see Figs. 3 and 4). We note that, except for

the driest regions, the amplitude of the normalized dif-

ferences between the twomodels at 1-day lead are of the

same order of magnitude as the differences between

GPM and CMORPH mean rain rates, although the

geographic patterns of these differences are very dis-

tinct.More substantial differences are found in the 1-day

lead probability density distribution of rain rates in the

models versus observations, particularly when pdfs are

estimated using rain rates at 0.258 3 0.258 and within the

initial 6 h (top row in Fig. 5). Both models tend to

overestimate light to moderate rain rates and un-

derestimate no rain occurrences, very light, and strong

rain rates. This is true even when accounting for the

differences between GPM and CMORPH, which also

highlights the issue of large uncertainties in estimates of

rainfall (Gehne et al. 2016). The differences between the

models and observations are partially due to the fact

that the standard output from the models reflects the

average rain rate over the forecast period whereas both

GPM and CMORPH report instantaneous rain rates.

Nevertheless, even when calculating daily averages,

the pdfs still suggest that modeled rain rates vary less

than in satellite observations. Interestingly, by calcu-

lating daily averages, we also find that pdfs are in much

closer agreement over the midlatitudes than in the

tropics (bottom row in Fig. 5), which is in line with

the overall increase in forecast skill with distance from

the equator.

Maps of gridpoint temporal correlations show that,

similarly to mean rain rates, the day-1 forecast time se-

ries of rainfall are well correlated with observations, but

much more so in the extratropical regions and over the

oceans (Fig. 6). The meridional gradient in QPF skill is

seen when comparing models with one another or with

observations, whereas the two observational datasets

are better correlated with each other regardless of the

latitude except over regions of elevated terrain (see Dai

et al. 2007). QPF skill decays very quickly with lead time

everywhere, and the geographic contrasts seen at 1-day

remain intact out to longer lead times. By comparing

averaged gridpoint correlations over the tropics versus

NH, it is clear that the IFS performs better than the GFS

in both regions. This can be seen at very short lead times

and, therefore, could be partially due to the differences

in their data assimilation systems. There are, however,

some interesting contrasts in how skill decays over the

tropics versus over the NH. For example, while the

differences between IFS and GFS skill continue to in-

crease with lead time from days 1 to 10, over the NH this

difference is nearly constant for the first 2 days, then it

increases until day 8 when it starts to decrease. More-

over, in agreement with a number of other studies

(Haiden et al. 2012; Zhu et al. 2014;Wheeler et al. 2017),

we find that skill deteriorates much faster at earlier

forecasts in the tropics than in the extratropics, but then

at around day 3 extratropical forecast skill starts to de-

cay faster than tropical skill so that by day 7 for the IFS

and day 8 for the GFS, tropical QPF skill scores are

higher than NH QPF. Similar behavior is seen in dy-

namical variables such as D850 and Z500 (Fig. 8), except

that tropical D850 skill in the IFS and GFS is very sim-

ilar over the tropics, suggesting that physical parame-

terizations related to precipitation might explain the

differences in QPF between GFS and IFS.

To investigate the relationship between tropical QPF

and equatorial waves, we apply longitude–time spectral
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analysis of forecast time series. From this analysis it is

clear that in the GFS and IFS most of the coherence

between modeled and observed precipitation at the

1-day lead comes from low-frequency variability, but the

IFS shows more coherence at synoptic scales, particu-

larly along WIG and Kelvin wave dispersion curves

(Fig. 10). The phase between modeled and observed

precipitation shows that while the two fields are in phase

at low frequencies, there is a tendency for forecast pre-

cipitation to occur too soon compared to observations at

higher frequencies. The coherence between analyzed

low-level divergence and observed rainfall aligned with

the MJO and Matsuno’s dispersion curves is similarly

represented using the IFS or the GFS (Figs. 11a,d).

However, the coherence between IFS forecast low-level

divergence and rainfall is closer to the observed re-

lationship for longer lead times than in the GFS, im-

plying that the IFS is more able to realistically propagate

such disturbances. The enhanced coherence at syn-

optic scales between IFS modeled rainfall, its low-

level divergence, and observed rainfall imply that

CCEWs contribute substantially to tropical short- to

medium-range QPF deterministic skill, which is con-

sistent with Ying and Zhang (2017, 2018). The relative

roles of the quality of tropical initial conditions versus

physics in the ability of the model to propagate

CCEWs is an interesting topic that we are currently

investigating.

To relate the quality of forecasts in the tropics to the

extratropics, we applied a conditional pdf approach

showing that when very short-range tropical forecast are

good, NH extratropical medium-range forecasts are

more likely to be good and vice versa. When the quality

of the tropical forecast is measured from its QPF skill,

this relationship is found in the IFS beyond day 3, but

not in the GFS. The timing is roughly consistent with the

time it takes for Rossby wave trains excited in the

tropics to propagate to midlatitudes (Newman and

Sardeshmukh 1998; Branstator 2014). When the quality

of the tropical forecast is measured from its D200 very

short-range skill, this relationship is found in both

forecast systems. The simplest interpretation of these

results is that the GFS short lead time tropical fore-

cast errors related to horizontal and vertical distri-

bution of latent heating quickly lead to errors in the

tropical atmospheric circulation response; therefore,

any potential extratropical skill deriving from wave

trains excited in the tropics is deteriorated. In con-

trast, if the GFS is initialized with good tropical

circulation (based here on the quality of D200), then

the tropical wave source associated with tropical

divergence is better represented and, therefore, ex-

tratropical skill is drawn from wave patterns forced

from the tropics. In the IFS, because circulation and

precipitation are more tightly related, errors in pre-

cipitation and divergence are more strongly related,

therefore, both initial QPF and D200 tropical skills

modulate extratropical skill at later lead times. The

pdf results shown here indicate that the difference in

midrange extratropical skill in the IFS and GFS at

least partially originates from tropical short-range

forecast errors.

By contrasting the GFS and IFS, this study suggests

that a NWP model’s ability to initialize and propagate

equatorial waves is related to global skill in short- to

medium-range forecasts. Therefore, diagnostics such as

the coherence and phase between low-level divergence

and precipitation, which are relatively easy to calculate,

are potentially useful targets for model development

aimed at reducing tropical forecast errors and or un-

derstanding sources of errors. However, it is important

to note that while the relationship between equatorial

waves and QPF is compelling, we cannot assess a causal

relationship using the diagnostics applied here. For in-

stance, both improved QPF skill and representation of

equatorial waves could be unrelated when both are

the result of an improved representation of the

background state or vertical profiles of latent heating.

We plan on further investigating these issues in a fu-

ture modeling study.

One aspect of model performance that we excluded

from the main analysis presented here is related to the

diurnal cycle of rainfall. Using an earlier version of the

IFS, Kidd et al. (2013) found that the modeled ampli-

tude of the diurnal cycle is too strong and the peak

rainfall occurs too early over most of the tropics in

comparison to satellite estimates. These errors have

been reduced in a more recent model version (Bechtold

et al. 2014). We have carried out a similar analysis (see

appendix B) that demonstrates similar results for the

IFS version used here. In particular, the phase difference

between IFS and observations is strongest over tropical

land, a result that was confirmed using both CMORPH

and GPM. As a positive note regarding the GFS per-

formance, the diurnal cycle phasing is one example

where the GFS is more realistic than the IFS. As shown

in appendix B, the phase of the GFS diurnal cycle of

rainfall is similar to the IFS over most of the globe, ex-

cept that early afternoon peak of the GFS diurnal

rainfall cycle over tropical land agrees with observa-

tions, as opposed to the IFS peak that often occurs a few

hours earlier. The causes and implications of NWP er-

rors associated with the diurnal cycle of tropical rainfall

is fundamental to the problem of modeling pre-

cipitation, and is certainly a topic that merits further

investigation.
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APPENDIX A

Fractions Skill Score

To investigate the role of spatial scales in QPF skill we

use the fractions skill score (FSS; Roberts 2008; Roberts

and Lean 2008), which among other useful properties,

yields an intuitive view of what spatial scales a forecast

can be considered useful. The FSS calculation is rela-

tively simple and we summarize this here, and refer to

Roberts and Lean (2008) for greater detail.

The first step in the FSS calculation is to convert the

data to a binary field by choosing an absolute (i.e., a

given value) or relative (i.e., quartile) threshold. Here

the threshold used is the upper quartile of the

CMOPRH twice-daily averaged rain rates during the

analyzed period within the two regions (i.e., tropics or

NH); however, our main conclusions are not sensitive to

the choice of a reasonable threshold. The next step is to

generate the fractions associated with each scale, which

is calculated at each grid point in the region of verifi-

cation. The scale refers to the choice of number of grid

points surrounding the target grid point and the fraction

is the number of such grid points where rain rates ex-

ceeds the threshold divided by the total number of grid

points. In our case, we use squared areas and because we

start with data at 0.258 3 0.258, a scale of 0.258 means

that there is only one grid point in that region; therefore,

fractions can be only 0 or 1. A scale of 0.758 means that

the 8 grid points surrounding the target grid point are

used to calculated the fraction and fractions now can be

0, 1/9, 2/9, . . . , 1 and similarly to larger scales. The FSS

is then calculated following Eqs. (6) and (7) in Roberts

and Lean (2008), noting that we calculate the FSS for

two latitudinal bands: 108S–108N and 358S–508N.

Each panel in Fig. A1 corresponds to the mean FSS

at a given scale and these show the evolution of tropical

(darker lines) and NH (lighter lines) FSS with lead time.

The flat lines show that the FSS between CMORPH and

GPM in the tropics (black) and NH (gray) is very high,

but the agreement at finer scales is better in the tropics

than in NH. As scale increases, the FSS tends to be the

same in both regions. The difference between NH and

tropical QPF at short- to medium-range forecasts at the

smallest scale (Fig. A1a) is consistent with the mean

gridpoint correlations shown in Fig. 6, but it decreases

with increasing scale. In fact, the very short-range QPF

skill is nearly the same for both models and regions at

1.758, and tropical skill is higher than extratropical skill

beyond this scale. Interestingly, the IFS tropical skill is

larger than that in the NH for most scales after day 6 or 7,

but for theGFS, the transition only occurs for the largest

scales shown in Fig. A1. When the switch from higher

NH to higher tropical skill occurs, the timing of the

transition is consistent with the correlation skill. The

overall FSS decay with lead time is also consistent with

the correlation skill decay. The FSS analysis shown here

implies that the skill differences between IFS and GFS

and tropics and extratropics are not overly sensitive to

spatial scales.

APPENDIX B

Analysis of the Diurnal Cycle of Rainfall

To compare the performance of the IFS and GFS

regarding the diurnal rainfall cycle, we first calculate the

amplitude and phase of rain rates using the 0.258 3 0.258
and 6-hourly outputs. For models, the day-1 amplitude

and phase are defined by fitting the first harmonics of

diurnal cycle to rain rate among forecast lead times

6–24. Day-2 amplitude and phase are similar, except that

amplitude and phase are calculated based on the 30–48

forecast time window, and similarly for all forecast days.

Times at each grid point are converted to local solar time

(LST). For observations, we derive daily time series of

amplitude and phase in an analogous way after con-

verting 3-hourly GPM and CMORPH rain rates to

6-hourly means centered at the same UTC hours as

the models.

Mean diurnal phase at each grid point is calculated by

averaging the daily time series of diurnal phase about its

mode [see Sakaeda et al. (2017) for more details], which

calculates the mean diurnal phase by equally weighting

all days independent of the amplitude of the diurnal

cycle. This method is slightly different from the method

used in Bechtold et al. (2014), where the mean diurnal

phase was calculated by fitting diurnal harmonics to

mean hourly rain rates, which would preferentially

weight the diurnal phase of days with relatively strong

rain rates. Figure B1 shows that CMORPH and

GPM are in very good agreement regarding the timing

of peak rainfall and phases during the 15 months ana-

lyzed, consistent with similar analysis over extended

periods (Dai et al. 2007). This analysis also indicates

that over ocean, rainfall tends to peak a few hours

earlier in IFS and GFS compared to GPM or
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FIG. A1. FSS for the tropics (darker lines) and NH (lighter lines). NCEP GFS in blue and ECMWF

IFS in red are verified against CMORPH. Gray and black correspond to FSS between GPM and

CMORPH in the NH and tropics, respectively.
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CMORPH, whereas over tropical land, the IFS tends

to have peak rainfall earlier than the GFS, GPM,

and CMORPH.

The phase difference over tropical land between IFS

and GPM has been previously reported (Kidd et al.

2013; Bechtold et al. 2014). In Bechtold et al. (2014) it is

demonstrated that in a new version of the ECMWF

model the difference in phase is less than in Kidd et al.

(2013). While the IFS rainfall over tropical land is likely

to peak in the tropics only a few hours earlier than in

GPM, since we are analyzing 6-hourly output as op-

posed to hourly in Bechtold et al. (2014), we cannot

assess what the precise phase difference is between

models and observations. A similar analysis of the di-

urnal cycle was carried out with 3-hourlyGFS andGPM,

which shows that the GFS and GPM peak tropical

rainfall over land occurs at the same time. We also find

that the timing of peak rainfall does not depend strongly

on lead time, which can be seen comparing the day-1 to

day-5 phases in Fig. B1.

Similar to the map of the mean rain rates shown in

Fig. 1, the IFS tends to underestimate the diurnal am-

plitude over the ocean (not shown). However, the IFS

tends to overestimate the diurnal amplitude over land

in contrast to its underestimation of mean rain rates

(Figs. 2d,f). The GFS tends to overestimate the di-

urnal amplitudes over both land and ocean even

though it tends to underestimate the mean rain rates

(Fig. 2). This result indicates that the total rainfall

variability explained by the diurnal cycle is too large

in the GFS, perhaps related in part to its lack of

rainfall variability associated with the convectively

coupled equatorial waves.
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